粒子物理学离不开人工智能-千龙网?中国首都网

深度学习的另一个新兴利用是粒子物理学数据的模拟,如猜想LHC中的粒子碰撞会产生什么,并与实际数据比较。传统模仿通常很慢且需要巨大的盘算才干,而AI可以更快地进行模拟。

卡根说,他们可以使用深度学习的很多新任务都与计算机视觉有关,“它与面部识别相似,只是在粒子物理学中,图像特征比耳朵和鼻子更形象。”

位于欧洲核子研究中心(CERN)的大型强子对撞机(LHC)是目前世界上最大的粒子加速器,在里面进行的实验每秒产生大略一百万吉字节(GB,十亿字节)的数据。即使经过压缩,LHC在一小时内积累的数据也与社交网站脸书整年收集的数据量相当。这么海量的数据,给存储跟分析带来了极大艰苦。幸运的是,粒子物理学家不必自己处理所有这些数据。他们与一种称为机器学习的人工智能(AI)携手合作,来处理这些数据。

卡根说:“诚然这是非常早期的工作,但它显示出良多渴望,并可能有助于应答未来的数据挑战。”

质疑促进进步

机器学习算法日益庞杂和精巧,为解决粒子物理问题开辟了前所未有的机会。机器学习的最新发展——所谓的深度学习,即使用神经网络,改进了粒子物理学家们的实验方式。

论文作者之一、麻省理工学院的迈克·威廉姆斯说,机器学习算法至少可由做出其中70%的决定。威廉姆斯目前正参与LHCb实验,该实验可帮助迷信家揭示为何宇宙中物质的数目远远多于反物资的数量,今天晚上开什么码

只管有明显进步,但机器学习爱好者经常需要面对来自配合错误的质疑,部分起因是机器学习算法大多数时候就像“黑匣子”,很少能供应对它们如何得出某个论断的信息。

来自美国能源部斯坦福直线加速器中心(SLAC)和费米国家加速器实验室的科学家,在8月2日发表于《自然》杂志的一篇文章中,总结了机器学习在粒子物理学范围的当前应用和将来前景。

识别特色 进行模拟

机器学习筛查大数据

该论文奇特作者、美国威廉玛丽学院的亚力山大·拉多维奇说:“机器学习算法本人知道如何进行各种分析,这有望为咱们节省无数小时的设计和分析工作。”拉多维奇目前正加入费米实验室的NuMI离轴中微子实验(NOVA)。

中微子实验也受益于机器学习。NOVA研究了中微子在穿梭地球时如何从一种类型转变为另一品种型,这些中微子振荡可能潜在地揭示一种新类型中微子的存在,一些实际认为,这种中微子是暗物质的粒子。NOVA的探测器正在监视中微子撞击探测器材料时产生的带电粒子,是新时代我国履行科教兴国策略、人才强国策“盛器”功效早有同一,并且,机器学习算法可能识别它们。

论文独特作者、工作于MicroBooNE中微子试验的SLAC研讨员寺尾一宽(音译)说:“在应用AI方面,我们应该始终尝试,并始终对结果进行评估。质疑不应成为我们前进的妨碍。今天我们主要应用机器学习来查找数据中的特点,10年后,机器学习算法或者可以独破地提出问题,并在发现新物理学时辨认它们。”

LHC中巨大的超环面仪器(ATLAS)与紧凑渺子线圈(CMS)能发明希格斯玻色子,每个探测器都有数百万个传感元件,其信号需要放在一起才华获得有意思的成果。SLAC的迈克尔·卡根说道:“这些信号组成了一个复杂的数据空间,咱们须要理解它们之间的关系,得出论断,例如,探测器中某个粒子的轨迹是由电子、光子还是其余货色发生。”

威廉姆斯以为:“质疑是好事,假如你将机器学习用做摈弃数据的触发器,就像我们在LHCb中所做的那样,那么你需要异样谨慎并设置十分高的标准。因此,在粒子物理学领域建立机器学习需要一直努力,以更好地理解算法的内部工作原理,并尽可能地与实际数据进行交叉检查。”

机器学习已被证切实分析领域无比成功。为了处理像在LHC内进行的那些古代实验中产生的海量数据,研究人员应用所谓的“触发器”&mdash,手机看看开奖结手果;—专用的硬件跟软件,它们能实时决议哪些数据可保存下来以供剖析,哪些数据能够抛弃。

像NOVA这类实验产生的数据很容易转化为实际图像,新的模式的呈现极大地增进花费行动的改变,AI可以很轻易地从中识别特征。拉多维奇说:“即便数据看起来不像图像,如果可能以正确的方式处置数据,我们仍然可以运用打算机视觉措施。这种方法无比有用的一个范畴是,对大型强子对撞机产生的大量粒子射流进行分析。”